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ABSTRACT

Transmission lines of arbitrary cross~section
loaded by dielectric and gyromagnetic lossy media
of arbitrary shape are analyzed. A finite element
method using a new transerve fields formulation
is used, which leads to an eigenvalue problem.
This direct method allows to take into account
comp lex frequency dependent physical parameters.
Numerical examples are carried out on a ferrite
phase shifter . Attenuation of the guided wave
is evaluated.

I - INTRODUCTION

This issue presents a studie [1-6] based on a

finite element formulation of 2D transmission
line problem. A novel method is proposed, using
a new '"transverse fields" basis. At this time,
direct calculation of propagation parameters

for a 2D transmission line of arbitrary cross=-
section, loaded by ferrites and dielectrics with
arbitrary sections, was not resolved in its whole
generality some papers give approaches to this
problem but always with important simplifications.
At present state of this work, following hypothesis

are made metal walls are assumed to have perfect
conductivity ; permittivity 1is supposed to be
constant in each material, but may vary from

material to material and can be very high ; there
are no charges and no currents inside the wave-
guide. Main interests of this formulation are
- to be direct, i.e. that frequency is considered
as a data, and the complex propagation constant
I' becomes the unknown parameter.

- to give a first degree equation in T.

So this formulation allows both direct introduction
of physical parameters which are most often fre-
quency dependent, and also to take into account
losses of materials and their variations throughout
samp les.

II - VARIATIONAL FORMULATION

Basic
wave

equations describing an ‘electromagnetic
propagating in z direction are_ normalized
using complex vectorial variables E.exp (jut-
rz) and G. exp (jwt-Tz), with G = -j.c.uo.H;
where ¢ is the 1light velocity in free space and
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Ho is the permeability of free space.
Thus, Maxwell equations become
-, T = -p -’_’
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where w is the angular f£frequency, z;_r is
the relative scalar permittivity and TTr
is the relative permeability tensor of the
medium.

The mathematical development is described in [7
and leads to the following system :
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where the subscripts tt, tz, zt, and zz refer

to the 2x2,2x1,1x2,1x]1 submatrices.

After multiplying (1) and (2) with trial
functions Ut, Vt and integrating by parts the
expressions over the waveguide section, one

can suppress secondary derivatives
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Longitudinal fields Ez and Gz are expressed as

functions of transverse fields with expressions
(3) and (4).

This formulation allows to take into account
dielectric and magnetic losses. No restriction
is made on permeability. Actual calculations
are made with a scalar permittivity which 1is
supposed to be constant in each material but
formulation is compatible with a tensorial and

locally variable permittivity.

III - FINITE-ELEMENT DISCRETIZATION
AND BOUNDARY CONDITIONS

Trial functions ﬁ? and V? are chosen continuous
on the integration region, with the same external
boundary _ conditions as the physical variables
Et and Gt Thesg.last ones are exprg§sed as func-
tion ot Ut and Vt. However, Et and Gt are discon-
tinuous on the boundaries between two different
media. These discontinuities can be treated by
the use of a matrix transformation [8] on the
selected side of the boundary. This is possible
because the boundary steps of transverse fields
are explicitely known.

According to the finite element

ethod, equations

(6) and (7), with Ez, Gz and Gt given by (3),
(4) and (5), are discretized into a finite sum-
mation, so that unknown variables become the

discrete values of EF and Gt at each nodes of
the meshing (cf. figures 1 and 3)

(3)Lalix3, (8)-xi

If Et and Gt are continuous at the boundary

between materials i and j, then[Pij}is the identity
matrix.

Above equations are reduced to a linear system :

[AL{x] =P [8] {x]

Waveguide boundaries are introduced by DIRICHLET

conditions.

Triangular finite elements of the second order
were employed for discretization of the field
region in order to calculate the longitudinal
components Ez and Gz. 1Indeed, these components
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are necessary to evaluate losses and power effects.

IV - ACTUAL NUMERICAL RESULTS FOR
LOSSLESS CASES

Dielectric slab loaded waveguide case :

In order to verify the software, it was first
tested with a simple dielectric loaded waveguide.
Results where compared with analytical calculated
values, and precision of the fundamental mode
was always better than 0.03 %.

Ferrite slab loaded waveguide case

A similar ferrite slab loaded waveguide structure
(dimensions : 8.64x4.32 mm2) is studied. This
structure, shown on figure (1), is composed of
air (material 1) and of a ferrite slab (material
2) characterized by its relative permittivity
er=2, and its tensorial permeability :

1 0 0.1
[ 0 1 0 J
-0.1j 0 1

ur =

Main results on TElQ modes and other founded modes

are presented on figure (2) and compared with
theoretical computed values. The meshing here
used has got 114 nodes. Calculations are made
on MICROVAX IT.

Again, our finite element calculations are in
in good agreement with the exact solutions for
the fundamental mode. At high frequencies,
precision on higher order modes is degraded,
due to an insufficient number of elements in
the meshing.

Actually, all spurious can be eliminated with
physical criteria on real and imaginary parts

of the propagation constants.
The same exemple has been carried out at 25 GHz

with a "166 nodes" mesh and propagation constant
was more precise : &8 = 17.413 rad/m, precision
= 0,8 %.

V - ACTUAL RESULTS WITH LOSSY

MATERIALS

Influence of dielectric and magnetic losses on
the complex propagation constant I' has
been evaluated for a ferrite loaded waveguide
at 25 GHz. The mesh is presented on figure (3).
The ferrite slab (material 2) is magnetized in
order to get a relative permeability tensor

- g 0 Jjk

ur = [ o1 0 ]

-k 0 n
with p = 0,8-ju" and k = 0,4~jk"
The relative permittivity of the ferrite has
a realistic value of : g, = 10 -j.e".
Comparison of finite element loss contant and
corresponding semi-analytical calculated value
gives good agreement either for dielectric or
magnetic losses as shown on figure 4.
VI - DESIGN OF FERRITE PHASE SHIFTERS

Precise calculations of ferrite phase shifters

need a good knowledge of both local static internal
fields and magnetization inside the ferrite.



So, a finite element sub-process is necessary
to evaluate these vectorial quantities. This
sub-process must use the same meshing as for
the propagation calculation. Then, a routine
calculates the locally variable permeability
tensor, which is necessary in order to get precise
results.

Arcing phenomena and non linear effects
the ferrite are related to electromagretic

inside
local

fields. Local heating inside dielectric and
magnetic materials can also be deduced. As
electromagnetic local fields and local Ilosses

are calculated, this formulation allows to evaluate
mean and peak power capability of devices. A
graphic post processor will give useful
informations on engineering problems.

VII - CONCLUSION

This electromagnetic fields 2D formulation allows,
in microwave propagation studies by finite elements
methods, to introduce at each point of a
transmission line section any frequency dependant
parameter as tensor pr of magnetically polarized

ferrite.
Applied on microwave phase-shifter structures
fully analytically computable, first results

show very precise values of propagation constants

both for dielectric or ferrite 1loaded cases.
Evaluation of more real phaseshifters are on
the way, but they mneed to evaluate local
magnetization and local magnetostatic field.
Results will be given at the conference with
presentation of maps of local fields and local
losses.

This work was supported by D.A.I.I., FRANCE.
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TE10 MODES : PROPAGATION CONSTANT VERSUS FREQUENCY
FREQ. 3 THEORETICAL 8 CALCULATED PREC. HIGHER ORDER CALCULATED
(GHz) VALUES {(rad/m) VALUES (rad/m) (%) MODES (% Precision on 8)
25 B+ = 427.157 B+ = 427.398 0.06 NO HIGHER MODE
B_ = ~409.882 B_ = -409.594 0.07
58 = 17.275 83 = 17.804 3.
30 B+ = 574.410 3+ = 574.524 0.02 LSM11 (%)
B_ = -553.699 B_ = -553.570 0.02
58 = 20.711 88 = 20.954 1.2
35 B+ = T716.721 B+ = 716.550 0.02 { LSMi1 (¥)
B_ = -691.410 B_ = -691.455 0.007| LSE20 (0.43%)
6 = 25.311 83 = 25,095 0.9
40 3+ = 860.584 B+ = 860,003 0.07 LSM11 (%) LSE20 (0.23%)
B_ = -830.029 B_ = -830.394 0.04 LSM21 (%) LSE10 (x)
83 = 30.555 68 = 29.609 3.1
45 B+ = 1008.504 B+ = 1007.283 0.12 LSM11 (%) LSE11 (%)
B_ = -973.404 $_ = -974.086 0.07 LSM21 (¥) LSE20 (0.16%)
8B = 35.1 88 = 33.197 5.4

(*) Theoretical

values are not available
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LOSSES SEMI-ANALYTICAL | FINITE-ELEMENT
METHOD METHOD
a (dB/m) a (dB/m)
e'’=1,10- a—- = 5.66 a- = 5.59
u'’= k'’= at = 5.66 at = 5.69
p'’= 8.10-4 a- = 5.31 a- = 5.25
iz kU= at = 5.36 at+ = 5.38
k’’= 4,10- a— = 1.46 a- = 1.42
€'’z '’z at = 1.48 at+ = 1.50
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