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ABSTRACT

Transmission lines of arbitrary cross-section

loaded by dielectric and gyromagnetic 10SSY media

of arbitrary shape are analyzed. A finite element

method using a new transerve fields formulation

is used, which leads to an eigenvalue problem.

This direct method allows to take into account

complex frequency dependent physical parameters.

Numerical examples are carried out on a ferrite

phase shifter . Attenuation of the guided wave

is evaluated.

I- INTRODUCTION

This issue presents a studie [1-6] based on a
finite element formulation of 2D transmiaaion

line problem. A novel method is proposed, using

a new “transverse fields” baais. At this time,
direct calculation of propagation parameters

for a 2D transmission line of arbitrary cross-

section, loaded by ferrites and dielectrics with

arbitrary sections, was not resolved in its whole

generality : some papers give approached to this
problem but always with important simplifications.

At present state of this work, following hypothesis

are made : metal walls are assumed to have perfect

conductivity ; permittivity is supposed to be

constant in each material, but may vary from

material to material and can be very high ; there

are no charges and no currents inside the wave-

guide. Main intereats of this formulation are :

- to be direct, i.e. that frequency is considered

as a data, and the complex propagation constant

r becomes the unknown parameter.

- to give a first degree equation in r.

So this formulation allows both direct introduction

of physical parameters which are most often fre-

quency dependent, and also to take into account

leases of materials and their variations throughout

samplea.

11 - VARIATIONAL FORMULATION

Basic equations describing an electromagnetic

wave propagating in z direction are+ normalized

using vectorial variables

an~om%!xexp (jut-rz),

E.exp (jut-

rz) with ~= -j.c.~o.r

where c is the light velocity in free space and

po is the permeability of free apace.

Thus, Maxwell equations become

where u is the angular frequency, cr is

the relative scalar permittivity and ~r

is the relative permeability tensor of the

medium.

The mathematical development is described in [7]

and leads to the following system :

where the subscripts tt, tz, Zt> and zz refer

to the 2x2,2x1,1x2,1x1 submatrices.

After mul~iplying (1) and (2) with trial
functions Ut, V? and integrating by parts the

expressions over the waveguide section, one

can suppreas secondary derivatives :
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are necessary to evaluate losses and power effects.

Longitudinal fields Ez and Gz are expressed as

functions of transverse fields with expressions

(3) and (4).

This formulation allows to take into account

dielectric and magnetic losses. No restriction

is made on permeability. Actua 1 calculations

are made with a scalar permittivity which is
supposed to be constant in each material but

formulation is compatible with a tensorial and

locally variable permittivity.

III - FINITE-ELEMENT DISCRETIZATION

AND BOUNDARY CONDITIONS

+ +
Trial functions Ut and Vt are chosen continuous

on the integration region, with the same external

~undary+ conditions as the physical variables

Et and G& These+last ones a~e expr~ssed as func-

tion ot Ut and VC. However, Et and Gt are discon-

tinuous on the boundaries between two different

media. These discontinuities can be treated by

the use Of a matrix transformation ~~ on the
selected side of the boundary. This is possible

because the boundary steps of transverse fields

are explicitly known.

According to the finite element

(6) and (7), with Ez, G. and ~t~~ne~t~~~

(4) and (5), are discretized into a finite sum-

mation, so that unknown variables become the

discrete values of ET and & at each nodes of

the meshing (cf. figures 1 and 3) :

If Et and Gt are continuous at the boundary

between materials i and j, then[Pij]is the identity

matrix.

Above equations are reduced to a linear system :

Waveguide boundaries are introduced by DIRICHLET

conditions.

Triangular finite elements of the second order
were employed for discretization of the field
region in order to calculate the longitudinal
components Ez and Gz. Indeed, these components

IV - ACTUAL NUMERICAL RESULTS FOR

LOSSLESS CASES

Dielectric slab loaded waveguide case :

In order to verify the software, it was first

tested with a simple dielectric loaded waveguide.

Results where compared with analytical calculated

va lues, and precision of the fundamental mode

was always better than 0.03 %.
Ferrite slab loaded waveguide case :

A similar ferrite slab loaded waveguide structure

(dimensions : 8.64x4.32 mm2) is studied. This

structure, shown on figure (l), is composed of

air (material 1) and of a ferrite slab (material

2) characterized by its relative permittivity

cr=2, and its tensorial permeability :

;=

[

10 O.lj

l~r = 010
-0.lj O 1 1

Main results on TE1O modes and other ~unded modes

are presented on figure (2) and compared with

theoretical computed va lues. The meshing here

used has got 114 nodes. Calculations are made

on MICROVAX II..

Again, our finite element calculations are in
in good agreement with the exact solutions for

the fundamental mode. At high frequencies,

precision on higher order modes is degraded,

due to an insufficient number of elements in

the meshing.

Actually, all spurious can be eliminated with

physical criteria on rea 1 and imaginary parts

of the propagation constants.
The same exemple has been carried out at 25 GHz

with a “166 nodes” mesh and propagation constant

was more precise : 66 = 17.413 radfm, precision
= 0,8 %.

v- ACTUAL RESULTS WITH LOSSY

NATERIALS

Influence of dielectric and magnetic losses on

the comp lex propagation constant r has

been evaluated for a ferrite loaded waveguide

at 25 GHz. The mesh is presented on figure (3).

The ferrite slab (material 2) is magnetized in

order to get a relative permeability tensor

[

~Ojk~
pr = 010

-jk O u 1
with u = 0,8-jD” and k = 0,4-jk”
The relative permittivity of the ferrite has

a realistic value of :

Comparison of finite c~e~~j”~l~s contant and

correspond inz semi-analvtica 1 calculated va lue
gives “good ‘agreement e“ither for
magnetic losses as shown on figure

VI .- DESIGN OF FERRITE PHASE

Precise calculations of ferrite

need a good knowledge of both local
fields and magnetization inside

dielectric or

4.

SHIFTERS

phase shifters

static internal
the ferrite.
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so, a finite element sub-process is necessarY

to evaluate these vectorial quantities. This

sub-process must use the same meshing as for

the propagation calculation. Then, a routine

calculates the locally variable permeability

tensor, which is necessary in order to get precise

results.

Arcing phenomena and non linear effects inside

the ferrite are related to electromagnetic local

fields. Loca 1 heating inside dielectric and

magnetic materials can also be deduced. As

electromagnetic loca 1 fields and loca 1 losses
are calculated, this formulation allows to evaluate
mean and peak power capability of devices. A

graphic post processor will give useful

information on engineering problems.

VII - CONCLUSION

This electromagnetic fields 2D formulation allows,

in microwave propagation studies by finite elements

methods, to introduce at each point of a

transmission line sect~on any frequency dependant

parameter as tensor ur of magnetically polarized

ferrite.
Applied on microwave phase-shifter structures
fu 1 ly analytically computable, first results

show very precise values of propagation constants
both for dielectric or ferrite loaded cases.

Evaluation of more real phaseshifters are on

the way, but they need to evaluate loca 1

magnetization and loca 1 magnetostatic field.

Results will be given at the conference with

presentation of maps of local fields and local

losses.
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I TE1O MODES : PiWPAGATION CONSTANT VERSUS FEEQUENCY
1

FREQ.

I

13 THEORETICAL
(GHz) VALUES(I’ad/ln)

25 fi+ = 427.15’7
B_ = -409.882

~~ . 17.275

+-

30 13+ = 574.410
B_= -553.699

613 = 20.711

35 fj+ = 716.721

13_= -691.410
6fj = 25.311

13 CALCULATED
VALUES (rd/m)

13+ = 427.398
R_= -409.594

613 = 17,804

13+ = 574.524

B_= -553.570
6R = 20.954

R+ = 716.550

B_= -691.455
613 = 25,095

13+ = 860.003
13_= -830.394

6R = 29.609

D+ = 1007,283

13_= -974.086
613 = 33.197

PREc.
(%)

0.06
0.07
3.

0.02
0.02
1.2

0.02
0.007
0.9

0.07
0.04
3.1

0.12
0.07
5.4

HIGHER ORDER CAUXJIATED
M3DES (% Precision on f))

NO HIGHER MODE I

I

T
Ii3Mll (X) 1.SiE20 (0.23%)
LsM21 (*) J.sElo (*)

I.SM1l (X) LSE1l (*)
LSM21 (*) LSE20 (0.16%)

(x) Theoretical values are not available

FIGuRE-2-
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FIGuRE -3-

LOSSES

E “= 1.10-3

P
}J=~,)=o

v “= 8.10-4
E ,,=~])=o

k“= 4.10-4
E 99= ~J=o

P

SEMI-ANALYTICAL
METHOD

a (dB/m)

a- = 5.66
a+ = 5.66

a- ❑ 5.31
a+ ❑ 5.36

a– = 1.46
a+ = 1.48

WNITE-ELEMSWI
ME1’HOD
a (dB/m)

a- = 5.59
a+ ❑ 5.69

a– = 5.25
a+ = 5.38

a- = 1.42
a+ = 1.50

FIOURE -4-
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